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Abstract

In this paper, we describe how we can compute the integrals of a class of so called improper
Riemann integrals and a class of non-absolute Henstock-Kurzweil integrals, which are highly
oscillatory and are not Lebesgue integrable.

1 Introduction
It is known that the Riemann integration is useful for computation because of its even partition.
However, we learn later that the family of Riemann integrable functions-denoted by R(f), is only
a subset of Lebesgue integrable functions-denoted by L(f) and the family of Henstock-Kurzweil
integrable functions-denoted by HK(f)-is an extension for Lebesgue integrable functions. In other
words, we have

R(f) � L(f) � HK(f): (1)

In this paper, we will describe how some functions in HK(f) can be computed by introducing an
uneven partition. We will take care of two types of functions: one is the family of monotonic functions
with singularities, which normally are computed as 'improper' Riemann integrals, but now they are
direct results from Henstock-Kurzweil de�nition. Second, we will take care of functions that are
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highly oscillatory. It is known that Fundamental Theorem of Calculus should be valid when a function
F is differentiable on (a; b) and we haveZ b

a

F 0(x)dx = F (b)� F (a): (2)

However, the Lebesgue integration requires F 0 to be integrable over [a; b]: Thus we will see how to
integrate certain class of functions that are not Lebesgue integrable but is Henstock-Kurzweil inte-
grable.
In Sections 1.1, we describe some terminologies and an important outcome, Theorem 2, from

the de�nition of Henstock-Kurzweil integral. In Section 2, we introduce open and closed types of
quadratures in 1-D and how we can control the corresponding errors. In Section 3, we describe
integration quadratures in 2-D and their corresponding errors.

1.1 Preliminary
Let A = [a; b]; we say P = f(A1; x1); :::; (An; xn)g is a partition of A if A1; :::; An are non-
overlapping subintervals, xi 2 Ai; for i = 1; 2; :::; n; and [ni=1Ai = A:
Let � be a positive function de�ned on A: A partition P = f(A1; x1); :::; (An; xn)g is called �-�ne

if Ai � (xi � �(xi); xi + �(xi)), for i = 1; 2; :::n:We �rst give the de�nition of Henstock-Kurzweil
integration on one dimension.

De�nition 1 A real-valued function f is said to be Henstock-Kurzweil integrable (or simply HK-
integrable) with value I on [a; b] if for every � > 0 there is a positive function � on [a; b] such that�����

nX
i=1

f(xi) jAij � I
����� < � (3)

for each �-�ne partition P of A; where jAij denotes the length of Ai; i = 1; 2; :::; n: In such case, we
write

R b
a
f dx or simply

R b
a
f:

The next theorem says that there is no improper Henstock-Kurzweil integrals (see [4]).

Theorem 2 Let f be a real-valued function de�ned on [a; b];and let f be HK-integrable over [c; b] for
each c 2 (a; b]: If the �nite limit limc!a+

R b
c
f = I . ThenZ b

a

f = lim
c!a+

Z b

c

f = I: (4)

The following is another way of stating the Theorem above.

Theorem 3 Let f be HK-integrable over [c; b] for each c 2 (a; b): If given � > 0 there exists c 2 (a; b)
such that ����Z c

a

f

���� < �; (5)

then f is HK-integrable over [a; b].
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Proof. The condition states that f is HK-integrable over [a; c]; and since f is HK-integrable over
[c; b]; this implies that f is integrable over [a; b]:
We shall see how this can be used for our numerical computations. First, we introduce uneven

partition and integration quadratures.

2 One dimensional quadrature
De�nition 4 A matrix A with positive ank is called uniformly regular if the following conditions are
satis�ed:
(i) limn!1 ank = 0 uniformly over k:
(ii)
Pn

k=1 ank = 1:

For example, we may use the �nite sum formula,
Pn

k=1 k
m; m = 1; 2; :::; to form uniform regular

matrices. If we de�ne the matrix ank = 2(b�a)k
n(n+1)

, and choose a = 0; b = 1; the following rows shows
the partition for the interval of [0; 1] when n = 1; 2; :::; 10:

1 0 0 0 0 0 0 0 0 0
1
3

2
3

0 0 0 0 0 0 0 0
1
6

1
3

1
2

0 0 0 0 0 0 0
1
10

1
5

3
10

2
5

0 0 0 0 0 0
1
15

2
15

1
5

4
15

1
3

0 0 0 0 0
1
21

2
21

1
7

4
21

5
21

2
7

0 0 0 0
1
28

1
14

3
28

1
7

5
28

3
14

1
4

0 0 0
1
36

1
18

1
12

1
9

5
36

1
6

7
36

2
9

0 0
1
45

2
45

1
15

4
45

1
9

2
15

7
45

8
45

1
5

0
1
55

2
55

3
55

4
55

1
11

6
55

7
55

8
55

9
55

2
11

We introduce two quadratures in 1-D:

1. The open type quadrature

Q1n(f) =

nX
k=2

ank
2
(f(un;k�1) + f(unk)) : (6)

In this case we are dealing with a function having a singularity at x = a in the interval [a; b];
our quadrature is to avoid the singularity at x = a:

2. The closed type quadrature

Q2n(f) =

nX
k=1

ank
2
(f(un;k�1) + f(unk)) (7)

or

Q2n(f) =
1

2
an1f(un1) +

nX
k=2

ank
2
(f(un;k�1) + f(unk)) (8)

207



The Electronic Journal of Mathematics and Technology, Volume 3, Number 3, ISSN 1933-2823

where unk = a+
Pk

i=1 ani; and un;0 = a:
Remark:
(1) By looking the ank =

2(b� a)k
n(n+ 1)

;we notice that for each n; we have an1 < an2 < ::: < ann andPn
k=1 ank = b� a; which is the basis of our choice of uneven partitions.

(2) Both quadratures are similar to the trapezoidal rule except we are using uneven partitions, which
are the essence of the HK-integration.
(3) In the closed type quadrature, if the Eq. 7 contains the singularity at the end point at x = a; or
x = b; subsequently, we set f(a) = 0 or f(b) = 0 in such case.
(4) In Eq. 8, we consider the integral value of f over the �rst interval [a; un1]: In other words, we
ignore the singularity at x = a:We shall see we apply this quadrature for functions that are monotonic
and have singularities near the end point.

2.1 Error in 1-D
We consider the function f in each subinterval [un;k�1; unk], we quote a theorem in [6], which can be
used to estimate the error in 1-D.

Theorem 5 Let C be the simple curve,w(t) = (x(t); y(t)); t1 � t � t2: Let R be the region bounded
by C; by the line y = mx+ b (which does not intersect C ) and by the perpendiculars to the line from
(x(t1); y(t1)) and (x(t2); y(t2)): Then the area of R is given by

1

1 +m2

Z t2

t1

(�x(t)m+ y(t)� b) (x0(t) + y0(t)m) dt: (9)

We interpret the parametric curve in the function setting (x; f(x)); when x 2 (un;k�1; unk): We
write the slope and the y-intercept in the interval (un;k�1; unk) asMnk and Bnk below respectively,

Mnk =
f(unk)� f(un;k�1)
unk � un;k�1

; and (10)

Bnk = f(un;k�1)�Mnk � un;k�1: (11)

The error of the open type quadrature is

1

1 +M2
nk

Z unk

un;k�1

(�xMnk + f(x)�Bnk)(1 + f 0(x)Mnk)dx: (12)

Thus, the accumulative error of the closed type quadrature, Q2n(f) of Eq. 7 over the entire interval
[a; b], when we partition it into n subintervals using the matrix ank; is

E1n(f) =

nX
k=1

"
1

1 +M2
nk

Z unk

un;k�1

(�xMnk + f(x)�Bnk)(1 + f 0(x)Mnk)dx

#
: (13)

The Formula 13 is useful since only the �rst derivative is needed for calculation and we can use a
computational tool to evaluate E1n(f).
Following the idea mentioned in [2], we can show that
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Theorem 6 If f is Riemann integrable over [c; b] for each c 2 (a; b] and improper Riemann integrable
over the interval [a; b]: Then f is HK-integrable over [a; b]; and we haveZ b

a

f = lim
n!1

Q1n(f) = lim
n!1

 
nX
k=2

ank
2
(f(un;k�1) + f(unk))

!
, (14)

where Q1n(f) is the quadrature applied on the interval [a; b].
In particular, if function f is monotonic over (a; b] and has a singularity at x = a; Eq. 14 can be
replaced byZ b

a

f = lim
n!1

Q2n(f) = lim
n!1

 
1

2
an1f(un1) +

nX
k=2

ank
2
(f(un;k�1) + f(unk))

!
; (15)

Proof. f is Riemann integrable over [c; b]. From the Theorem 20.1 in [2], we haveZ b

c

f = lim
m!1

mX
k=1

bmkf(xmk) = lim
m!1

mX
k=1

bmk(f(vm;k�1) + f(vmk))

2
;

where vm;k�1 = c+
Pk�1

i=0 bmk; vmk = c+
Pk

i=0 bmk, and vm;k�1 � xmk � vmk.
Since f is improper Riemann integrable on [a; b], we have

lim
c! a+

Z b

c

f =

Z b

a

f:

Let c = un1 = a+ an1, bmk = an;k+1, k = 1; :::;m, so we have

lim
n!1

Z b

un1

f = lim
n!1

n�1X
k=1

an;k+1(f(un;k) + f(un;k+1))

2
= lim

n!1

nX
k=2

an;k(f(un;k�1) + f(un;k))

2
:

When f is monotonic over (a; b] and has a singularity at x = a; we note that limn!1 an1 = 0; and
Eq. 15 follows.
Next, we describe how we can use Eq. 6 to approximate the integral for a function over the interval

[a; b], which has a singularity at the end point x = a: Assume the conditions of Theorem 6 are met, f
is HK-integrable over [a; b]; then given � > 0 there exists a number c 2 (a; b] such that����Z c

a

f

���� < � (16)

1. If we write
R b
a
f = limn!1

�Pn
k=2

�
ank
2
f(un;k�1) + f(unk)

��
: Given � > 0 there exists c 2

(a; b] and a positive integer N such that if n � N; we have un1 2 (a; c] satisfying����Z un1

a

f

���� < ����Z c

a

f

���� < �=2 (17)

and �����
Z b

un1

f �
nX
k=2

hank
2
f(un;k�1) + f(unk)

i����� < �=2: (18)
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Thus, we can write����Z b

a

f �Q1n(f)
���� � ����Z un1

a

f

����+
�����
Z b

un1

f �
nX
k=2

hank
2
f(un;k�1) + f(unk)

i����� < �: (19)

We can use Formula 13 to �nd the error for
���R bun1 f �Pn

k=2

�
ank
2
f(un;k�1) + f(unk)

���� ; which
can tell us how many partitions n is needed to take to achieve the required accuracy of �=2:

2. On the other hand, in case f is monotonic and has a singularity at x = a; we writeZ b

a

f = lim
n!1

Q2n(f) = lim
n!1

 
1

2
an1f(un1) +

nX
k=2

ank
2
(f(un;k�1) + f(unk))

!
:

Given � > 0 there exists c 2 (a; b] and a positive integer N such that if n � N; we �nd
un1 2 (a; c] such that ����Z un1

a

f

���� < ����Z a+c

a

f

���� < �=4, (20)

an1 jf(un1)j < �=2 and (21)�����
Z b

un1

f �
nX
k=2

ank
2
(f(un;k�1) + f(unk))

����� < �=2: (22)

Thus, we can write����Z b

a

f �Q1n(f)
���� � ����Z un1

a

f � an1f(un1)
2

����
+

�����
Z b

un1

f �
nX
k=2

ank
2
(f(un;k�1) + f(unk))

�����
<

����Z un1

a

f

����+ ����an1f(un1)2

����
+

�����
Z b

un1

f �
nX
k=2

ank
2
(f(un;k�1) + f(unk))

�����
<
�

4
+
�

4
+
�

2
= �: (23)

Remark:
(1) When we do not know the exact numeric value for

R b
a
f; and use the open type quadrature Q1n(f)

to approximate
R b
a
f;we may use Eq. 18 to see how many partitions are needed or how we can choose

un1 in the interval [un1; b]: However, if we do not know the exact value of
R un1
a

f , we do not know the
smallest positive integer n is needed for satisfying Eq. 19. Similar conclusion can be drawn when f
is monotonic and has a singularity at x = a:
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(2) For a monotone function f that has a singularity at x = a; it is clear that the closed type quadra-
ture Q2n(f) =

1

2
an1f(un1) +

Pn
k=2

ank
2
(f(un;k�1) + f(unk)) is better than the open type quadrature

Q1n(f):
The following example shows how we use Q1n(f) and Q2n(f) respectively to approximate an im-

proper integral.

Example 7 We de�ne f(x) =
1p
x
if x 6= 0; and f(0) = 0: It is easy to prove that f is HK-integrable

over [0; 1] and we note the followings.

We choose ank=
2k

n(n+ 1)
: With the help of Maple, we can compute directly that

lim
n!1

Q1n(f) = lim
n!1

 
nX
k=2

ank
2
(f(un;k�1) + f(unk))

!
= 2; and

lim
n!1

Q2n(f) = lim
n!1

 
1

2
an1f(un1) +

nX
k=2

ank
2
(f(un;k�1) + f(unk))

!
= 2:

Since f is monotone, we see from the following Matlab computations that the closed quadrature (see
Matlab Example 7 closed1d.m) gives a better estimate than the open quadrature (see Matlab Example
7 open1d.m):

Q21000(f) = 1:998246073 Q11000(f) = 1:997539274
Q21100(f) = 1:998405479 Q11100(f) = 1:997762942
Q21200(f) = 1:998538346 Q11200(f) = 1:997949351
Q21300(f) = 1:998650698 Q11300(f) = 1:998106978
Q21400(f) = 1:998747175 Q11400(f) = 1:998242279
Q21500(f) = 1:998830614 Q11500(f) = 1:998359368

With the help of Matlab (see Matlab Example 7 error1d.m), we may use Formula 13 to compute

E1n(f) =

Z b

un1

f �
nX
k=2

hank
2

�
f(un;k�1) + f(unk)

�i
:

For example, when n = 1000 is used, we get E1n(f) = �3:663451630525485e � 004 in [an;1; 1].
When n = 1500 is used, we get E1n(f) = �2:443817648409486e � 004 in [an;1; 1]: As expected, we
see that jE11500(f)j < jE11000(f)j :

2.2 Highly Oscillatory in 1-D
In this section, we describe how we integrate a function that is highly oscillatory near the singularity.
An HK-integrable function is called non-absolute if f is integrable but not jf j : In other words, we
describe ways of computing a type of non-absolute HK-integrable function in this sub-section.
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Theorem 8 Let fxrg ! a+; and Ar = limn!1Q
1
n(f) in [xr+1; xr]; where x0 = b: If

P1
r=0Ar

converges, then f is HK-integrable over [a; b] andZ b

a

f =

1X
r=0

Ar: (24)

Proof. Ar = limn!1Q
1
n(f) in [xr+1; xr], so f is HK-integrable on [xr+1; xr] and Ir =

R xr
xr+1

f .
For each non-negative integer r, choose a positive function �r on [xr+1; xr] such that jf(P ) �R xr

xr+1
f j < �

2r+1
whenever P is a �r-�ne partition on [xr+1; xr]. Let Ir = (xr+1; xr) and de�ne a

positive function � on (a; b] by

�(x) =

8><>:
minf�0(b); b� x1g x = b

minf�r(x); �(x; CIr) x 2 Ir
minf�r(xr+1); �r+1(xr+1); `(Ir); `(Ir+1)g x = xr+1

;

where CIr = [xr+1; xr]:

jf(P )�
Z b

a

f j �
1X
r=0

jf(Pr)�
Z xr

xr+1

f j <
1X
r=0

�

2r+1
= �

So f is HK-integrable and
R b
a
f =

P1
r=0

R xr
xr+1

f =
P1

r=0Ar.
Similarly, we have the following Theorem.

Theorem 9 Let fxrg ! a+; and Ar = limn!1Q
r
n(f) in [xr+1; xr]; r = 0; 1; 2; :::; with x0 = b: If

for each r; there is anM > 0; and a positive integer Nr such that if n � Nr; we have

jQrn(f)j <
M

2r
: (25)

Then f is HK-integrable over [a; b] and Z b

a

f =
1X
r=0

Ar: (26)

Proof. Let fxrg ! a+: For each r; since Ar = limn!1Q
r
n(f) in [xr+1; xr]; we can �nd positive

integer N�
r � Nr such that if n � N�

r ; we have

jQrn(f)j <
M

2r
(27)

jAr �Qrn(f)j < 2�r or (28)����Z xr

xr+1

f �Qrn(f)
���� < 2�r: (29)
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We shall show Theorem 3 holds. For all � > 0; we need to �nd r so that the following is true:����Z xr

a

f

���� � 1X
m=r

����Z xm

xm+1

f

���� (30)

�
1X
m=r

����Z xm

xm+1

f �Qmn (f)
����+ 1X

m=r

jQmn (f)j (31)

�
1X
m=r

2�m +
1X
m=r

M

2m
(32)

� 1

2r�1
+
M

2r�1
=

1

2r�1
(M + 1) < �; (33)

which implies that if r >

264 ln(M + 1

�
)

ln 2
+ 1

375 + 1; then Theorem 3 holds, where [x] denotes the
smallest integer greater than or equal to x.
Follow the ideas mentioned above, we can generalize the previous result as follows:

Theorem 10 Let fxrg ! a+; and Ar = limn!1Q
r
n(f) in [xr+1; xr]; r = 0; 1; 2; :::; with x0 = b: If

for each r; there is anM > 0; and a positive integer Nr such that if n � Nr; we have

jQrn(f)j < Mg(r): and (34)
1X
r=1

g(r) <1: (35)

Then f is HK-integrable over [a; b] and Z b

a

f =

1X
r=0

Ar: (36)

Proof. Let fxrg ! a+: For each r; since Ar = limn!1Q
r
n(f) in [xr+1; xr]; we can �nd positive

integer N�
r � Nr such that if n � N�

r ; we have

jQrn(f)j < Mg(r) (37)
jAr �Qrn(f)j < g(r) or (38)����Z xr

xr+1

f �Qrn(f)
���� < g(r): (39)

213



The Electronic Journal of Mathematics and Technology, Volume 3, Number 3, ISSN 1933-2823

Given � > 0; we shall �nd necessary r from the following observation:����Z xr

a

f

���� � 1X
m=r

����Z xm

xm+1

f

���� (40)

�
1X
m=r

����Z xm

xm+1

f �Qmn (f)
����+ 1X

m=r

jQmn (f)j (41)

�
1X
m=r

g(m) +
1X
m=r

Mg(m) (42)

�
 1X
m=r

g(m)

!
(1 +M) < �: (43)

Thus we solve for r such that  1X
m=r

g(m)

!
<

�

1 +M
: (44)

Example 11 We de�ne f(x) = 1
x
sin( 1

x
) if x 6= 0; and f(0) = 0: We shall show that f is HK-

integrable though not Lebesgue integrable over [0; 1] when we prove its two dimensional extension in
the next section. We demonstrate how we approximate the integral

R 1
0
f . We �rst note the followings:

(1) We can't apply the uneven partition and quadrature over the interval [0; 1] in one step. Instead,
we construct a sequence fxng converges to 0:
(2) In other words, we select

xi = 5
�(i�1) (45)

for i = 1; 2; :::. We approximate the integral of f in each Ii = [xi+1; xi] and denote the integral of
f over Ii by Ai when applying the closed type quadrature Q2n(f) =

Pn
k=1

ank
2
(f(un;k�1) + f(unk)),

where un0 = xi+1;and unk = xi+1 +
Pk

i=1 ani:
(3) Therefore, Z 1

0

f =

rX
i=1

Ai; (46)

for some r: If we use the matrix ank =
2k

n(n+ 1)
and the closed type quadrature in each Ii = [xi+1; xi]

for i = 1; 2; :::6;and with the help of Matlab and the closed type Q2n(f) ,we obtain the following (see
Matlab Example 11 closed1d.m and example11.m):

A1 = 6:038477253680541e� 001; n = 2000 A4 = 7:832784472836141e� 003; n = 2500
A2 = �1:844869863026124e� 002; n = 2000 A5 = �1:350711522280514e� 003; n = 2500
A3 = 3:305131047013245e� 002; n = 2500 A6 = �1:996700125703929e� 004; n = 4500:

(47)
Thus Z 1

0

1

x
sin

1

x
dx (48)

is approximately equal to
P6

i=1Ai = 6:247327401459105e� 001:
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3 Two Dimensional Henstock Integrals
The Henstock integral and our quadratures can be stated in higher dimensions. First we shall de�ne
Henstock integral in higher dimension. Let A be a �xed interval in the n�dimensional Euclidean
space. A division D = f(I; x)g of A is a collection of �nite number of interval-point pairs (I; x)
such that the intervals are pair-wise non-overlapping and their union is A: If the union is a subset of
A;we call such D a partial division. For example, in one dimension a division D of an interval [a; b]
is given by a = x0 < x1 < ::: < xn = b: If I = [xi�1; xi] and x 2 I;we use (D)

P
f(x) jIj to denotePn

i=1 f(xi)(xi � xi�1): Note that in higher dimension jIj represents the volume of the I: A division
D = f(I; x)g is said to be � � fine if for each interval-point (I; x), we have x 2 I � S(x; �(x)),
where xis a vertex of I and S(x; �(x)) is an open sphere with center x and radius �(x). For simplicity,
we give the de�nition of Henstock integration on only two dimensions below.

De�nition 12 A real-valued function f is said to be Henstock-Kurzweil integrable (or simply HK-
integrable) with value I on an interval A = [a; b]� [c; d] if for every � > 0 there is a positive function
� on [a; b]� [c; d] such that �����

nX
i=1

f(xi) jAij � I
����� < � (49)

for each �-�ne partition P of A; where jAij denotes the area of Ai; i = 1; 2; :::; n: In such case, we
write

R
A
f dA or simply

R
f:

First, we introduce uneven partition and integration quadratures.
For a real-valued function f : [a; b]� [c; d]! R; we de�ne the following open type 2D quadra-

ture:

Q3nm(f) =
mX
l=2

nX
k=2

ankbml
4

(f(un;k�1; vm;l�1)

+ f(unk; vm;l�1) + f(un;k�1; vml) + f(unk; vml)) (50)

Similar to the 1-D case, we open type 2-D quadrature Q3nm(f) to handle singularities lying on the
edges. We also consider the following closed type 2-D quadrature:

Q4nm(f) =
mX
l=2

nX
k=2

ankbml
4

(f(un;k�1; vm;l�1) + f(unk; vm;l�1)+ (51)

f(un;k�1; vml) + f(unk; vml)) +
an1bm1
4

f(un1; vm1)

nX
k=2

ankbml
4

(f(un;k�1; vm1) + f(unk; vm1))+

mX
l=2

ankbml
4

(f(un;1; vm;l�1) + f(un1; vml))

in which un0 = a; unk = a +
Pk

p=1 anp for k = 1; 2; :::; n; vm0 = c; and vml = c +
Pl

q=1 bmq for
l = 1; 2; :::;m; note that unn = b and vmm = d. The following theorem is analogy to Theorem 6 in
1D, which we omit its proof.
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Theorem 13 If f is Riemann integrable over [c; b] � [d; f ] for each c 2 (a; b] and d 2 (e; f ]; and is
improper Riemann integrable over the interval [a; b]� [e; f ]: ThenZ Z

[a;b]�[e;f ]
f = lim

m!1
lim
n!1

Q3nm(f), (52)

or Z Z
[a;b]�[e;f ]

f = lim
m!1

lim
n!1

Q4nm(f): (53)

3.1 2D Error
We consider a rectangle in the xy plane enclosed by four points (a; b); (a + h; b); (a; b + k) and
(a + h; b + k): Next we de�ne a function on this rectangle and we label A = (a; b; f(a; b)); B =
(a+ h; b; f(a+ h; b)); C = (a; b+ k; f(a; b)); andD = (a+ h; b+ k; f(a+ h; b+ k)):We �rst note
that the volume for the trapezium bounded by ABCD is�

f(a; b) + f(a+ h; b)

2

�
hk: (54)

We note that this trapezium is taking the weights of two points, A and B into consideration. Thus, if
we replace h and k by uneven partitions ank and by bml respectively, we have a two point quadrature,
say �

f(a; b) + f(a+ ank; b)

2

�
ankbml; (55)

and we write Z Z
[a;a+ank]�[b;b+bml]

f =

�
f(a; b) + f(a+ ank; b)

2

�
ankbml + E

2
mn(f): (56)

In view of 2D closed quadrature 49, we may writeZ Z
[a;a+ank]�[b;b+bml]

f =
ankbml
4

(f(un;k�1; vm;l�1) + f(unk; vm;l�1)

+ f(un;k�1; vml) + f(unk; vml)) + E
4
mn(f); (57)

which we call it a four point quadrature in 2D. Intuitively, the four point quadrature gives a better
approximation since we are taking the average of weights by using four points; in other words, we
have

E4mn(f) < E
2
mn(f): (58)

Next, we should describe an error when three points are used. We now replace C by C� = (a; b +
k; f(a; b + k)) and we consider the plane P determined by three points, A;B; and C�; we set the
normal vector for P to be �!n = �!AB���!AC�: Assume �!n = (n1; n2; n3); then the plane equation for P
can be written as

n1(x� a) + n2(y � b) + n3(z � f(a; b)) = 0; (59)
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or
n1x+ n2y + n3z = n1a+ n2b+ n3f(a; b): (60)

If we use the plane P described above and apply the theorem below modi�ed from [6], we see that
volume below shall give good approximation of the error when 2D closed type quadrature 49 is used.

Theorem 14 Let S be a surface determined by the differentiable function f(x; y) in (a; b)�(c; d) and
continuous in [a; b]� [c; d]: Let P by the plane determined by three points (a; c; f(a; c)); (b; c; f(b; c))
and (a; d; f(a; d));and R be the region bounded by S; by the plane P; and by the perpendicular
projection from the surface to the plane P: If the plane equation for P is Ax + By + Cz = D: Then
the volume of R is given by Z Z

r(x; y)dpdq (61)

=

Z d

c

Z b

a

r(x; y)

����� @p@x @p
@y

@q
@x

@q
@y

����� dxdy;
where

24p(x; y)q(x; y)
r(x; y)

35 = [p1; p2; p1 � p2]�1
24 x

y
f(x; y)� D

C

35 , and p1 and p2 are two orthonormal basis in
the plane P:

Remark: If we apply the uneven partition matrices, ank and bml in each rectangle [a; a + ank] �
[b; b + bml]; the volume R represented by the double integral in Theorem 14 can be interpreted as
the estimate of the error for

R R
[a;a+ank]�[b;b+bml] f; when three points (a; b; f(a; b)); (a+ ank; b; f(a+

ank; b)) and (a; b+ bml; f(a; b+ bml)) are used; we denote such error by E3mn(f): Clearly, we have

E4mn(f) � E3mn(f) � E2mn(f): (62)

3.2 Special Type of Functions With Singularities
As we have discussed on 1-D monotone function, there is a reason we pick an uneven partition using a
uniformly regular matrix to make our convergence faster. In the following example, we describe how
we can make use of the uneven partitions to approximate an improper Riemann integral

R R
[a;b]�[c;d] f ,

where f : [a; b]� [c; d]! R and posses singularities near x = a and y = c.

Example 15 We de�ne f(x; y) =
1
p
xy
if (x; y) 2 (0; 1]� (0; 1] and f(x; y) = 0 when xy = 0: It is

easy to see that f is HK-integrable over [0; 1]� [0; 1]:

If we use ank =
6k2

n(n+ 1)(2n+ 1)
; bml =

6l2

m(m+ 1)(2m+ 1)
, we can use Maple to compute the

following (see Maple Examplr15.mws):

m = n Q3nm(f) Q4nm(f)
100 3:996446426 3:998131303
150 3:998194031 3:999119400
200 3:998877289 3:999481040
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It is easy to see the closed type quadrature Q4nm(f) gives a better approximation than the open type
Q3nm(f) in this case.

3.3 Highly Oscillatory Functions With Singularities
In this sub-section, we describe how a highly oscillatory, non-absolute function can be proved to
be HK-integrable from theoretical point of view and we also describe how we can prove a non-
absolute function to be HK-integrable from computational point of view. The next theorem describes
conditions for a non-absolute integral from theoretical point of view.

Theorem 16 LetX � A = [a; b]� [c; d] be closed and of measure 0 and f be Lebesgue integrable on
each interval Ii; i = 1; 2; :::;pair-wise non-overlapping and [1i=1Ii = A � X: Assume the following
function is well de�ned;H(I) =

P1
i=1

R
Ii\I f for every interval I � A: Then f is Henstock integrable

on A with the integral value H(A) if and only if the following (SL) condition on X holds: for every
� > 0 there exists �(x) > 0 such that for any �� fine partial divisionD = f(I; x)g of A with x 2 X
we have (D)

P
x2X jH(I)j < �:

Proof. The necessity follows easily from Henstock lemma (see [4] or [2]). To proves suf�ciency,
we assume f(x) = 0 when x 2 X: Then for every � > 0;there is �(x) > 0 such that for any � � fine
partition D = f(I; x)g of Ii we have

(D)
X

jf(x) jIj � F (I)j < �2�i; (63)

for i = 1; 2; :::, and for any � � fine partial partition D = f(I; x)g of A with x 2 X we have
(D)

P
jH(I)j < �: Hence for any � � fine partition D = f(I; x)g of A with D = D1 [D2; where

D1 has x in some Ii and D2 otherwise, we have���(D)X f(x) jIj �H(A)
��� � (D1)

X
jf(x) jIj �H(I)j+ (D2)

X
jH(I)j < 2�: (64)

Therefore, f is HK integrable over A and the proof is complete.
We remark that [4] has proved a similar result in which he gave suf�cient conditions so that f is

integrable. More precisely, Pfeffer requiresH(I) to exist for all such fIig: A version of this Theorem
has appeared in [5]. We shall see how this can be used for our numerical computations below. For
simplicity we assume the function has singularities along the x = a and y = c; the domain of our
integration is [a; b]� [c; d]; and b� a = d� c:We write Dij = [xi+1; xi]� [yj+1; yj]; where fxig !
a+; fyjg ! c+ as i; j !1: Then we compute the integralAij of f on eachDij by applying the closed
type quadratureQ4nm(f). For convenience we writeDi = Dii[D1i[ ::::[Di�1;i[Di1[ ::::[Di;i�1;
A1 = A11 and Ai = Aii + A1i + :::: + Ai�1;i + Ai1 + :::: + Ai;i�1 for i = 2; 3; :::. When there is no
confusion, we use Qin(f) to denote the quadrature Q4nm(f) on Di: Hence the estimate of the integral
of f on [a; b]� [c; d] is given by the sum

Pr
i=1Ai for some r: To prevent a subinterval to be too thin

due to the partition, we may use the same uneven partitions ank = bml on [a; b] and [c; d]:

Theorem 17 Let fxig ! a+; fyjg ! c+and Ai = limn!1Q
i
n(f): If for each i; there is anM > 0;

and a positive integer Ni such that if n � Ni; we have��Qin(f)�� < M

2i
: (65)
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Then f is HK-integrable over [a; b]� [c; d] andZ
[a;b]�[c;d]

f =

1X
i=0

Ai: (66)

Proof. Let fxig ! a+; fyjg ! c+:For each i; there is anM > 0 and a positive integer i such that if
n � Ni; since Ai = limn!1Q

i
n(f); we have��Qin(f)�� < M

2i
and (67)��Ai �Qin(f)�� < 1

2i
: (68)

Similar to the 1-D case, we observe the following: Given � > 0; we shall �nd necessary i from the
following observation: ����Z

[a;xi]�[c;yi]
f

���� � 1X
m=i

����Z
Dm

f

���� (69)

�
1X
m=i

����Z
Dm

f �Qmn (f)
����+ 1X

m=i

jQmn (f)j (70)

�
1X
m=i

2�m +
1X
m=i

M

2m
(71)

� 1

2i�1
+
M

2i�1
=

1

2i�1
(M + 1) < �; (72)

Example 18 We de�ne f(x; y) =
1

xy
sin(

1

xy
) if (x; y) 2 (0; 1] � (0; 1] and f(x; y) = 0 when

xy = 0:We shall show �rst the integral exists in the sense of HK-integral. We next describe how we
compute

R R
[0;1]�[0;1] f:

We shall describe a numerical method of computing the integral of f on [0; 1]� [0; 1] and provide the
theoretical justi�cation later. We write Dij = [xi+1; xi] � [yj+1; yj]; where xi =

1

2i�1
; yj =

1

2j�1
for

i; j = 1; 2; :::. Then we compute the integral Aij of f on each Dij applying the quadrature Q4nm(f).
For convenience we write A1 = A11 and Ai = Aii + A1i + :::: + Ai�1;i + Ai1 + :::: + Ai;i�1 for
i = 2; 3; :::. Hence the estimate of the integral of f on [0; 1] � [0; 1] is given by the sum

Pr
i=1Ai for

some r: With the choice

ank =
6k2

n(n+ 1)(2n+ 1)
; and bml =

6l2

m(m+ 1)(2m+ 1)
(73)

withm = n = 600 and r = 5; with the exception that we usem = n = 900 on A55 for accuracy. All
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computation are done byMatlab below (see Matlab Example 18, closed2d.m and example18.m):

A11 = 3:556911460387095e� 001 A24 = A42 = 1:114718337841618e� 003
A22 = 4:235363358640941e� 002 A34 = A43 = �6:399340315928442e� 005
A12 = A21 = �1:748938295935638e� 001 A55 = 1:554142287227561e� 005
A33 = 1:114718337841618e� 003 A15 = A51 = 1:114718337841618e� 003
A13 = A31 = 4:235363358640941e� 002 A25 = A52 = �6:399340315928442e� 005
A23 = A32 = �1:544234937543672e� 002 A35 = A53 = �1:142140513702673e� 004
A44 = �1:142140513702673e� 004 A45 = A54 = �7:395592409418208e� 005
A14 = A41 = �1:544234937543672e� 002

(74)

By summing the estimate above we obtainZ Z
[0;1]�[0;1]

1

xy
sin(

1

xy
) t

5X
i=1

Ai = 7:603759560620742e� 002: (75)

Claim: (HK)
R R

[0;1]�[0;1] f exists.
We put

I1 = D11; I2 = D22; I3 = D12; I4 = D21 and so on in Theorem 15. (76)

We show these Dij as follows in Figure 1:

Figure 1.

We shall show that the conditions in Theorem 16 are satis�ed for the function f and therefore the
above process gives an estimate of the integral value. First, we show that H(I) exists when I �
[0; 1]� [0; 1]: It is easy to see that H(I) exists when I � (0; 1]� (0; 1]: Note that keeping y constant

we have
d(cos

1

xy
)

dx
=

1

x2y
sin

1

xy
: Using integration by parts, we obtain for � > 0

Z 1

�

�
1

xy

�
sin

�
1

xy

�
dx = x cos

�
1

xy

��x=1
x=�

�
Z 1

�

cos

�
1

xy

�
dx: (77)
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Then it follows that

H([0; 1]� [0; 1]) = lim
i;j!0

Z
[2�i;1]�[2�j ;1]

f =

Z 1

0

cos

�
1

y

�
dy �

Z 1

0

Z 1

0

cos

�
1

xy

�
dxdy: (78)

HenceH(I) is de�ned for any I � [0; 1]� [0; 1]: In fact, we have also shown above that the repeated
integral of f on [0; 1] � [0; 1] exists and equal to H([0; 1] � [0; 1]): Following the same argument
above, we can prove that jH(I)j � 2(� � �) when I = [0; ] � [�; �] � [0; 1] � [0; 1]. Since the
function is symmetric, the same inequality holds for I = [�; �]� [0; ] � [0; 1]� [0; 1]: Now for � > 0
we choose 4 < � and we see that the (SL) condition holds. Consequently, the condition in Theorem..
are satis�ed. The proof of this example is complete.

3.4 Avoiding or Ignoring the singularities
It is well-known from [1] that in dealing with numerical integration of functions with singularities,
we apply very often the method of avoiding the singularity (our open type quadrature) or that of
ignoring the singularity (our closed type quadrature). It is intuitive to see if a function is monotone
with singularity near end point in 1-D or along the edges in 2-D, the closed type quadrature or ignoring
the singularities work better as saw in Example 7 and 15.
On the other hand, the Example 18 above is an instant of the principle of avoiding the singularity

when handling highly oscillatory functions. Suppose we add an additional termBr to
Pr

i=1Ai;where

Br = Brr +B1r + :::+Br�1;r +Br1 + :::+Br�1;r; (79)

and

Brr =

Z
[0;1=2r]�[0;1=2r]

f; (80)

B1r =

Z
[1=2;1]�[0;1=2r]

f; :::; (81)

and so on, and using an adaptive trapezoidal rule (by modifying Q3nm(f) so the singularities along
the x or y axes are included in the calculations) on each rectangle with f(x; y) = 0 when xy = 0:
Note that Bir is the integral of f on a rectangles along the x � axis and adjacent to that of Air for
i = 1; 2; :::; r � 1: Similarly, Bri is the integral of f on a rectangles along the y � axis and adjacent
that of Ari for i = 1; 2; :::; r � 1: The resulting quadrature giving the estimate

rX
i=1

Ai +Br (82)

can be called the compound adaptive trapezoidal rule in the plane of a closed type (ignoring singular-
ities). Unfortunately, the computation shows the closed type-ignoring singularities gives no pattern
of convergence where the open type described in the Example works perfectly. This is predicable
because for functions which are highly oscillatory near the singularities, we do not want to calculate
the areas (or volumes in higher dimension) for those rectangles near the singularities.
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3.5 Some Observations of Numerical Integration in Maple or Mathematica
1. For function such as F (x) = x2 cos

�
�
x2

�
if x 6= 0 and F (0) = 0; we know that F 0(x) =

2x cos
� �
x2

�
+
2� sin

� �
x2

�
x

if x 6= 0 and F 0(0) = 0: It is known that F 0(x) is not Lebesgue
but HK�integrable in [0; 1];and it follows from the Fundamental Theorem of Calculus thatR 1
0
F 0(x)dx = F (1) � F (0) = �1: The method we discussed in Example 7 will work well in

this case. However, both Maple 11 and Mathematica can not give us an answer.

2. They both rely on iterated integrals which are not always the value of the double integral (by
Fubini's theorem).

3. For function f(x; y) =
xy

(x2 + y2)2
if x2 + y2 > 0 and f(x; y) = 0 if x2 + y2 = 0 in the region

[�1; 1]� [�1; 1], Z Z
[�1;1]�[�1;1]

f(x; y)dA (83)

does not exist and yet the value of its repeated integrals is 0: Both Maple 11 and Mathematica
give the �wrong� answer 0 when repeated integrals

R 1
�1
R 1
�1 f(x; y)dxdy are computed.

4. Both Mathematica and Maple can't handle singularities which lie on the diagonal of a region.
Singularities lie on a diagonal line. Consider evaluating the following numerical integralZ 1

0

Z 1

0

cos 2�x cos 2�y
�
ln(x� y)2 � ln

�
1 + (x� y)2

��
dxdy; (84)

both Maple and Mathematica could not give an answer due the singularities lie along x = y:
What we will do is to transform the singularities to the boundary �rst and apply a quadrature
which uses uniformly regular matrices for computations. Note that the function f(x; y) =
cos 2�x cos 2�y

�
log(x� y)2 � log

�
1 + (x� y)2

��
is symmetric with respect to y = x; so we

consider the integration over the triangle with vertices O = (0; 0); P = (1; 0) and Q = (1; 1):
After the transformation with change of variables, u = x; and v = x � y; the singular points
are shifted to x- axis, and the Jacobian is

���� ux uy
vx vy

���� = ����� 1 0
1 �1

����� = 1: Thus, equation (1)
becomes

R 1
0

R 1
0
cos 2�u cos 2�(u � v) (ln v2 � ln (1 + v2)) dudv: By using ank = 2(b�a)k

n(n+1)
; and

bml =
2(b�a)l
m(m+1)

; and write a correspondingMatlab program, we obtain the following information

Q400;400(f) = �0:223374393133243
Q600;600(f) = �0:223411046499008
Q800;800(f) = �0:223421583469551
Q1000;1000(f) = �0:223425232050112

4 Conclusion
Numerical integration of functions with singularities is always a dif�cult subject and it becomes
even harder when we go from one dimension to higher dimensions. In this paper, we described
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quadratures involving matrices which allow us to partition an interval unevenly, which is an essence of
the Henstock-Kurzweil integration. Authors would like to comment that the computation techniques
described here are due to the evolving technological tools which allow users to experiment HK-
integral computationally
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